Search

Monday, September 07, 2020

Registration open for two statistics-related webinars: SMLP Wed 9 Sept, and Fri 11 Sept 2020

As part of the summer school in Statistical Methods for Linguistics and Psychology, we have organized two webinars that anyone can attend. However, registration is required. Details below

Keynote speakers

  • Wed 9 Sept, 5-6PM:Christina Bergmann (Title: The "new" science: transparent, cumulative, and collaborative)
    Register for webinar: here
    Abstract: Transparency, cumulative thinking, and a collaborative mindset are key ingredients for a more robust foundation for experimental studies and theorizing. Empirical sciences have long faced criticism for some of the statistical tools they use and the overall approach to experimentation; a debate that has in the last decade gained momentum in the context of the "replicability crisis." Culprits were quickly identified: False incentives led to "questionable research practices" such as HARKing and p-hacking and single, "exciting" results are over-emphasized. Many solutions are gaining importance, from open data, code, and materials - rewarded with badges - over preregistration to a shift away from focusing on p values. There are a host of options to choose from; but how can we pick the right existing and emerging tools and techniques to improve transparency, aggregate evidence, and work together? I will discuss answers fitting my own work spanning empirical (including large-scale), computational, and meta-scientific studies, with a focus on strategies to see each study for what it is: A single brushstroke of a larger picture.
  • Fri 11 Sept, 5-6PM: Jeff Rouder Title: Robust cognitive modeling
    Register for webinar: here
    Abstract: In the past decade, there has been increased emphasis on the replicability and robustness of effects in psychological science. And more recently, the emphasis has been extended to cognitive process modeling of behavioral data under the rubric of “robust models." Making analyses open and replicable is fairly straightforward; more difficult is understanding what robust models are and how to specify and analyze them. Of particular concern is whether subjectivity is part of robust modeling, and if so, what can be done to guard against undue influence of subjective elements. Indeed, it seems the concept of "researchers' degrees of freedom" plays writ large in modeling. I take the challenge of subjectivity in robust modeling head on. I discuss what modeling does in science, how to specify models that capture theoretical positions, how to add value in analysis, and how to understand the role of subjective specification in drawing substantive inferences. I will extend the notion of robustness to mixed designs and hierarchical models as these are common in real-world experimental settings.

No comments: