Search

Wednesday, March 31, 2021

New paper: The benefits of preregistration for hypothesis-driven bilingualism research

Download from: here

The benefits of preregistration for hypothesis-driven bilingualism research

Daniela Mertzen, Sol Lago and Shravan Vasishth

Preregistration is an open science practice that requires the specification of research hypoth- eses and analysis plans before the data are inspected. Here, we discuss the benefits of preregis- tration for hypothesis-driven, confirmatory bilingualism research. Using examples from psycholinguistics and bilingualism, we illustrate how non-peer reviewed preregistrations can serve to implement a clean distinction between hypothesis testing and data exploration. This distinction helps researchers avoid casting post-hoc hypotheses and analyses as con- firmatory ones. We argue that, in keeping with current best practices in the experimental sciences, preregistration, along with sharing data and code, should be an integral part of hypothesis-driven bilingualism research.


Friday, March 26, 2021

Freshly minted professor from our lab: Prof. Dr. Titus von der Malsburg


 One of my first PhD students, Titus von der Malsburg, has just been sworn in as a Professor of Psycholinguistics and Cognitive Modeling (tenure track assistant professor) at the Institute of LinguisticsUniversity of Stuttgart in Germany. Stuttgart is one of the most exciting places to be in Germany for computationally oriented scientists.  

Titus is the eighth professor coming out of my lab.  He does very exciting work in psycholinguistics; check out his work here.

Wednesday, March 17, 2021

New paper: Workflow Techniques for the Robust Use of Bayes Factors

 

Workflow Techniques for the Robust Use of Bayes Factors

Download from: https://arxiv.org/abs/2103.08744

Inferences about hypotheses are ubiquitous in the cognitive sciences. Bayes factors provide one general way to compare different hypotheses by their compatibility with the observed data. Those quantifications can then also be used to choose between hypotheses. While Bayes factors provide an immediate approach to hypothesis testing, they are highly sensitive to details of the data/model assumptions. Moreover it's not clear how straightforwardly this approach can be implemented in practice, and in particular how sensitive it is to the details of the computational implementation. Here, we investigate these questions for Bayes factor analyses in the cognitive sciences. We explain the statistics underlying Bayes factors as a tool for Bayesian inferences and discuss that utility functions are needed for principled decisions on hypotheses. Next, we study how Bayes factors misbehave under different conditions. This includes a study of errors in the estimation of Bayes factors. Importantly, it is unknown whether Bayes factor estimates based on bridge sampling are unbiased for complex analyses. We are the first to use simulation-based calibration as a tool to test the accuracy of Bayes factor estimates. Moreover, we study how stable Bayes factors are against different MCMC draws. We moreover study how Bayes factors depend on variation in the data. We also look at variability of decisions based on Bayes factors and how to optimize decisions using a utility function. We outline a Bayes factor workflow that researchers can use to study whether Bayes factors are robust for their individual analysis, and we illustrate this workflow using an example from the cognitive sciences. We hope that this study will provide a workflow to test the strengths and limitations of Bayes factors as a way to quantify evidence in support of scientific hypotheses. Reproducible code is available from this https URL.   


Also see this interesting  twitter thread on this paper by Michael Betancourt:


  

Monday, March 15, 2021

New paper: Is reanalysis selective when regressions are consciously controlled?

A new paper by Dr. Dario Paape; download from herehttps://psyarxiv.com/gnehs 

Abstract

The selective reanalysis hypothesis of Frazier and Rayner (1982) states that readers direct their eyes towards critical words in the sentence when faced with garden-path structures (e.g., Since Jay always jogs a mile seems like a short distance to him). Given the mixed evidence for this proposal in the literature, we investigated the possibility that selective reanalysis is tied to conscious awareness of the garden-path effect. To this end, we adapted the well-known self-paced reading paradigm to allow for regressive as well as progressive key presses. Assuming that regressions in such a paradigm are consciously controlled, we found no evidence for selective reanalysis, but rather for occasional extensive, heterogeneous rereading of garden-path sentences. We discuss the implications of our findings for the selective reanalysis hypothesis, the role of awareness in sentence processing, as well as the usefulness of the bidirectional self-paced reading method for sentence processing research.

Tuesday, March 09, 2021

Talk at Stanford (April 20 2021) Dependency completion in sentence processing: Some recent computational and empirical investigations

Title: Dependency completion in sentence processing: Some recent computational and empirical investigations 
When: April 20, 2021, 9PM German time
Where: zoom.

 Shravan Vasishth (vasishth.github.io) 

Abstract:
 Dependency completion processes in sentence processing have been intensively studied in psycholinguistics (e.g., Gibson 2000). I will discuss some recent work (e.g., Yadav et al. 2021) on computational models of dependency completion as they relate to a class of effects, so-called interference effects (Jäger et al., 2017). Using antecedent-reflexive and subject-verb number dependencies as a case study (Jäger et al., 2020), I will discuss the evidence base for some of the competing theoretical claims relating to these phenomena.  A common thread running through the talk will be that the well-known replication and statistical crisis in psychology and other areas (Nosek et al., 2015, Gelman and Carlin, 2014) is also unfolding in psycholinguistics and needs to be taken seriously (e.g., Vasishth, et al., 2018).

References 

Andrew Gelman and John Carlin (2014). Beyond power calculations: Assessing type S (sign) and type M (magnitude) errors. Perspectives on Psychological Science, 9(6), 641-651.

Edward Gibson, (2000). The dependency locality theory: A distance-based theory of linguistic complexity. Image, Language, Brain, 2000, 95-126. 

Lena A. Jäger, Felix Engelmann, and Shravan Vasishth, (2017). Similarity-based interference in sentence comprehension: Literature review and Bayesian meta-analysis. Journal of Memory and Language, 94:316-339. 

Lena A. Jäger, Daniela Mertzen, Julie A. Van Dyke, and Shravan Vasishth, (2020). Interference patterns in subject-verb agreement and reflexives revisited: A large-sample study. Journal of Memory and Language, 111. 

Brian A. Nosek, & Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science349(6251), aac4716-aac4716.

Shravan Vasishth, Daniela Mertzen, Lena A. Jäger, and Andrew Gelman, (2018). The statistical significance filter leads to overoptimistic expectations of replicability. Journal of Memory and Language, 103:151-175. 

Shravan Vasishth and Felix Engelmann, (2021). Sentence comprehension as a cognitive process: A computational approach. Cambridge University Press. In Press.

Himanshu Yadav, Garrett Smith, and Shravan Vasishth, (2021). Feature encoding modulates cue-based retrieval: Modeling interference effects in both grammatical and ungrammatical sentences. Submitted.

Wednesday, March 03, 2021

Talk at Hong Kong Virtual Psycholinguistics Forum (VPF, 心理语言学线上论坛)

I'll be giving at talk at the Chinese University of Hong Kong.
When: 10 March 2021
When: 10AM Berlin time
Where: Zoom:
https://cuhk.zoom.us/j/779556638
https://cuhk.zoom.cn/j/779556638 (mainland China)
Title: Case and Agreement Attraction in Armenian: Experimental and Computational Investigations
Abstract: https://osf.io/3wn79/